Языковая проблема искусственного интеллекта

Существует одна фундаментальная область знаний, судьба которой в контексте ИИ остается неясной: языковое знание. Системы вроде Siri или IBM Watson могут следовать простым воспроизведенным вслух или на письме командам и отвечать на элементарные вопросы, однако они не способны поддерживать беседу и не понимают реального смысла слов, которые используют. Если мы хотим по-настоящему ощутить на себе весь преобразовательный потенциал ИИ, ситуация в этой области должна измениться.

44f7eab7f1f4424eb759749a389765f7

Доводилось ли вам сталкиваться с системами искусственного интеллекта? Полагаем, ответ большинства хабравчан будет положительным. Ведь ИИ уже перестал быть «чем-то за гранью фантастики». Системы распознавания речи Siri, IBM Watson, ViaVoice, виртуальные игроки Deep Blue, AlphaGo и даже такие ранние системы, как MYCIN, разработанная в 1970-х годах в Стэнфордском университете и предназначенная для диагностирования бактерий, вызывающих тяжелые инфекции, а также для рекомендации необходимого количества антибиотиков — все это вариации на тему ИИ. Но, несмотря на то, что технологии стремительно набирают ход, современные системы все еще весьма «угловаты», и главная проблема, с которой сталкиваются исследователи, — это языковое обучение. Заставить систему говорить не сложно, но объяснить ей «физику» окружающего мира — то, что человек понимает на интуитивном уровне — пока не удавалось никому.

Тема языковой проблемы искусственного интеллекта широко раскрывается в статье Уилла Найта, главного редактора AI MIT Technology Review, которую специалисты PayOnline, системы автоматизации приема онлайн-платежей, старательно перевели для пользователей Хабрахабра. Представляем сам перевод.

Добавить комментарий